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Abstract 14 
This study presents a systematic review of electrochemical model-based battery state estimation 15 
methods. A search was conducted in Web of Science, Scopus, and IEEE Explore databases, resulting 16 
in the selection of 102 relevant research articles. These articles were carefully analyzed to summarize 17 
research trends, model selection, and estimation methods. Research trends cover publication years, 18 
journals, keywords. In terms of model selection, the review examines scalability, programming 19 
languages & software, battery materials, the choice of models, model simplification techniques, and 20 
parameter identification processes. The estimation methods are assessed based on the specific battery 21 
states and the algorithms employed for state estimation. The results indicate that while research in this 22 
area has been growing, it primarily focuses on individual cells, with limited attention paid to battery 23 
modules and packs. There is a noticeable lack of standardization in model simplification and 24 
parameter identification processes. Most studies concentrate on a single state estimation, with state of 25 
charge being mostly investigated, followed by state of health and state of temperature. Future research 26 
should address state estimation for modules and packs, parameter identification, model simplification, 27 
joint multi-state estimation, and better utilization of internal battery information for improving battery 28 
performance and safety. 29 
 30 
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AEM Average-electrode model 

BMS Battery management systems 

CKF Cubature Kalman filter 

DFN Doyle-Fuller-Newman 

ECMs Equivalent circuit models 

EKF Extended Kalman filter 

ESPM Extended Single Particle Model 

FDM  Finite difference method 

FEM Finite element method 

FVM Finite volume method 

GA Genetic algorithm 

KF Kalman filter 

LCO Lithium Cobalt Oxide 

LFP Lithium Iron Phosphate 

LMO Lithium Manganese Oxide 

MCMB Mesocarbon Microbeads 
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MHE Moving horizon estimation 

MPM Many-Particle Model 

NCA Lithium Nickel Cobalt Aluminum Oxide 

NMC Lithium Nickel Manganese Cobalt Oxide 

P2D Pseudo-Two-Dimensional 

PDE Partial differential equations 

PF Particle filter 

PI Proportional-integral 

PID Proportional-integral-derivative 

PRISMA Preferred reporting items for systematic reviews 

and meta-analyses 

PSO Particle swarm optimization 

RQ Research questions 

SEIKF Singular evolutive interpolated Kalman filter 

SMO-ERL Sliding-mode observers with an exponential 

reaching law 

SMO-URL Sliding-mode observers with a uniform reaching 

law 

SOB State Of Balance 

SOC State Of Charge 

SOE State Of Energy 

SOF State Of Function 

SOH State Of Health 

SOP State Of Power 

SOT State Of Temperature 

SOX State Of X 

SPM Single Particle Model 

SPMe Single Particle Model with Electrolyte 

UKF Unscented Kalman filter 

 39 
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1 Introduction 41 

As the notion of carbon neutrality increasingly gains traction as a developmental objective among 42 
nations worldwide, clean energy and energy storage technologies have witnessed remarkable progress 43 
in recent years [1]. Lithium-ion batteries have emerged as a fundamental energy storage solution 44 
across various applications, encompassing electric vehicles, portable electronics, and grid energy 45 
storage. Owing to their high energy density, long cycle life, and comparatively minimal self-discharge 46 
rates, they represent the preferred option for numerous applications [2]. To preserve optimal 47 
performance, safety, and longevity, battery management systems (BMS) are utilized to supervise and 48 
regulate battery operations. Consequently, the advancement of secure and dependable BMS has 49 
become a focal point of research, and the establishment of such systems is of paramount importance 50 
[3, 4]. 51 

A main component of BMS involves estimating various battery states, including State Of Charge 52 
(SOC), State Of Energy (SOE), State Of Health (SOH), State Of Power (SOP), State Of Temperature 53 
(SOT), State Of Balance (SOB), State Of Function (SOF), among others. These battery states can be 54 
collectively referred to as State of X (SOX) [4]. The SOC reflects the remaining capacity of the 55 
battery and is the most central state for battery management and control [4].  SOE is similar to SOC, 56 
except that it is defined in terms of residual energy [4]. The SOH reflects the health state of the 57 
battery. Regarding SOH, there are two definitions, one based on the decay of battery capacity, and 58 
one based on the increase of internal resistance [4]. The SOT of a battery is a crucial factor that 59 
significantly influences its safety. Battery temperature can typically be categorized into three types: 60 
battery surface temperature, battery core temperature, and battery bulk temperature. Battery core 61 
temperature is usually the maximum temperature inside the battery, and battery bulk temperature 62 
refers to the average temperature inside the battery [4]. SOP is an important state that affects the 63 
safety and performance of a battery, and SOP reflects how much maximum power a battery can 64 
output at a given moment [5]. The SOB is an emerging concept in battery research, focusing on the 65 
assessment and regulation of uniformity within a battery system [6].  SOF is an indicator used to 66 
determine whether a battery system can meet the requirements of a specific application [4]. 67 
Accurately determining these states is crucial for ensuring battery safety and optimizing both battery 68 
life and performance. The aforementioned battery states are often not directly measurable and 69 
necessitate estimation based on battery voltage, current, temperature, and additional information 70 
gathered through sensors and historical operating data. Lithium-ion batteries function as chemical 71 
energy storage systems. Their internal reaction mechanisms are inherently complex and nonlinear. 72 
This complexity makes the accurate description and estimation of various battery states particularly 73 
challenging [7]. 74 

Battery state estimation techniques primarily encompass direct measurement methods [8], 75 
machine learning methods [9], and model-based methods [10-13]. The direct measurement method 76 
like Coulomb counting has the advantage of simple logic and does not require a large amount of 77 
computation, but often results in large errors due to initial values and measurement noise. Machine 78 
learning approaches adeptly address nonlinear problems and are well-suited for battery state 79 
estimation applications. Nevertheless, machine learning techniques function as black boxes, 80 
precluding an understanding of the internal logic, and this makes it very difficult to perform fault 81 
diagnosis. At the same time, bottlenecks in computation capacity and data storage limit the 82 
application of machine learning methods. Model-based approaches typically exhibit commendable 83 
estimation accuracy and robustness when applied in the BMS. However, the accuracy of model-based 84 
techniques heavily relies on the accuracy of the battery model [11]. Designing a model-based battery 85 
state estimation method based on a highly accurate battery model could yield superior estimation 86 
accuracy and enhance BMS performance. 87 

The most common model-based methods used to estimate battery states in BMS rely on 88 
equivalent circuit models (ECMs). These models are characterized by their minimal computational 89 
complexity and therefore can be accommodated by BMS processors [14]. However, ECMs are 90 
phenomenological models, hence they cannot provide an accurate estimation of certain battery states, 91 
such as SOH, owing to an insufficient understanding of the influence on future behaviors, aging, and 92 
safety levels. Consequently, this can lead to the design of overly conservative estimation algorithms, 93 
which cannot fully exploit the existing potential of the battery. Additionally, the electrochemical 94 
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model offers a greater advantage over the ECMs by providing more detailed information about the 95 
battery internals. This is more beneficial for enhancing BMS performance and ensuring battery safety. 96 
Physics-based models rooted in fundamental electrochemical principles offer notable advantages. One 97 
prominent example is the Pseudo-Two-Dimensional (P2D) model, also referred to as the Doyle-98 
Fuller-Newman (DFN) model or Newman model [15]. It describes the battery dynamics with a set of 99 
coupled partial differential equations (PDE). Employing the electrochemical battery model facilitates 100 
a more comprehensive understanding of the battery's internal information. Nonetheless, employing 101 
electrochemical models for the development of battery management systems encounters a multitude 102 
of obstacles, including the necessity for simplification of electrochemical models owing to the 103 
computational capacity constraints of current BMS processor. Furthermore, designing battery state 104 
estimation algorithms based on intricate electrochemical models presents a formidable challenge. 105 
Consequently, conducting a review of the research advancements in this domain is of paramount 106 
importance. 107 

The flowchart of battery state estimation based on electrochemical models is presented in Fig. 1. 108 
The process commences with the modeling, which includes modeling for a single cell or a battery 109 
pack, the specific battery materials, the choice of software or programming language, and the 110 
selection of the precise electrochemical model. The second step entails model simplification, 111 
specifically involving the simplification of the electrochemical model and the identification of model 112 
parameters. The third step comprises the state estimation using the electrochemical model, including 113 
the choice of states to estimate and the selection of the specific estimation method. Finally, the 114 
validation.  115 

 116 
Fig. 1. Battery state estimation based on electrochemical models. 117 

 118 
Currently, there are a number of published literature reviews in this field. Park et al. [16] 119 

conducted an extensive analysis of contemporary approaches to battery state estimation methods 120 
through a literature review. Nevertheless, a significant proportion of the articles examined primarily 121 
focus on the ECMs methodology. Comprehensive reviews of battery modeling and state estimation 122 
approaches are presented by Wang et al. [4] and Hu et al. [17], although their assessments only 123 
cursorily address the electrochemical model and fail to offer an in-depth exploration of battery state 124 
estimation based in the electrochemical model. Although Planella et al. [18] provide a detailed outline 125 
of the electrochemical battery models, their investigation does not include battery state estimation 126 
techniques. As a result, a systematic review centering on state estimation based on electrochemical 127 
models remains absent.  128 

The systematic literature review is a novel approach to review literature [19]. Traditional 129 
literature reviews tend to be limited by the author's understanding and bias in retrieving papers. 130 
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Unlike traditional literature review methods, it provides a systematic method for literature retrieval 131 
and writing process. This approach significantly reduces research biases. Additionally, it ensures the 132 
presentation of results is both comprehensive and transparent. In this paper, we followed the process 133 
in Fig. 1 to present a systematic literature review that encapsulates battery state estimation methods 134 
based on electrochemical models, equipping researchers with valuable references and insights for 135 
future studies. The specific research questions (RQ) to be addressed are as follows: 136 

RQ1: What were the research trends? 137 
RQ2: What electrochemical battery models were used for battery state estimation? 138 
RQ3: Which battery state was selected for estimation and what algorithms were used? 139 

2 Method 140 

This section will refer to the PRISMA method [19] for systematic literature reviews.  It 141 
specifically includes: literature search strategy, literature selection criteria, and data extraction process. 142 

 143 
2.1 Literature search strategy 144 

This study searched a total of three high-quality databases, namely: Web of Science, Scopus and 145 
IEEE Explore. The following Boolean logic were searched: (“battery” OR “batteries”) AND 146 
(“electrochemical” OR “physic*”) AND (“state estimation” OR “state of charge” OR SOC OR “state 147 
of energy” OR SOE OR “state of health” OR SOH OR “state of power” OR SOP OR “state of 148 
temperature” OR SOT OR “state of balance” OR SOB OR “state of function” OR SOF). The search 149 
keywords are divided into three main levels: battery, electrochemical model, and battery state. The 150 
search keywords are searched in the title, keywords and abstract of the article. To reduce the work of 151 
screening papers in next steps, during the search process, filters are applied to select only journal 152 
articles, English-language articles, and to exclude literature reviews for a more focused and efficient 153 
search. The retrieval time range is up to December 31, 2023. 154 

 155 
2.2 Selection criteria 156 

The papers were screened using the PRISMA method. The specific process is shown in Fig. 2. In 157 
the first step, the papers were searched in the three databases using the method introduced in Section 158 
2.1, and a total of 6597 articles (Web of Science:2715, Scopus:2819, IEEE Explore:1063) were 159 
retrieved. The first step was performed to de-duplicate the papers, leaving 3455 articles remaining. 160 
The second part is to screen the articles according to their titles and abstracts, and a total of 2375 161 
articles are screened out in this step. The third step is to check whether the full text of the article is 162 
available. This step is all available in full text, so no articles are excluded. The fourth step is to read 163 
the full text of the article and make a detailed screening according to the screening criteria, which are 164 
shown in Table 1. It is worth noting that, although the search filters were set to exclude review articles 165 
and non-English articles, some such articles were still retrieved. This is due to errors in the database 166 
system's labeling. After the fourth step of screening, all articles that meet the requirements can be 167 
ultimately obtained. Finally, 102 articles [20-121] were selected to meet the requirements (see 168 
Appendix 1). 169 
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 170 
Fig. 2. Article Screening Results. 171 

 172 
 173 

Table 1 Exclusion and Inclusion Criteria. 174 

Inclusion Criteria Exclusion Criteria 

Lithium-ion battery Solid-state or other types of batteries 

Using P2D and its derivative battery models Not using P2D and its derivative battery models 

Battery state estimation algorithm design using 

electrochemical model 

No electrochemical model was used, or no 

battery state estimation algorithm design 

involved 

Lithium-ion battery Other types of batteries 

Journal Papers Non-journal papers 

Empirical study  Literature Review 

Written in English Written in other languages 

 175 
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2.3 Data extraction process 176 
The data selection process was guided by three research questions outlined in the Introduction 177 

section. Data extraction will be carried out from Table 2, i.e. 178 
1. Extraction centered on research trends: including trends in number of papers published 179 

annually, distribution of published papers across journals, distribution of keywords in papers.  180 
2. Extraction focused on electrochemical models:  battery formation methods, utilized 181 

programming languages and software, types of battery materials employed, electrochemical 182 
model utilized, model simplification method employed, and method used for identifying 183 
battery model parameters.  184 

3. Extraction pertained to state estimation methods: which the battery states are estimated, and 185 
the techniques used to estimate them. 186 
 187 

Table 2 Data extraction. 188 

Category Item Description 

RQ1: Research trends 

 Years 

Number of papers published 

annually 

Journals 

Distribution of published 

papers across journals 

Keywords 

Distribution of keywords in 

papers 

RQ2: Electrochemical models 

Scalability 

Battery formation methods for 

single cells, modules, or packs 

Programming Language & 

Software 

Utilized programming 

languages and software 

Materials 

Types of battery materials 

employed 

Model Selection Electrochemical model utilized 

Model Simplification 

Model simplification method 

employed 

Parameter Identification 

Method used for identifying 

battery model parameters 

RQ3: State estimation State Battery states estimated 

Algorithm Estimation methods used 

 189 
 190 
3 Results 191 

Following the data extraction method introduced in Section 2.3, the specific results are presented 192 
in detail in this section. 193 

 194 
3.1 RQ1: What were the research trends? 195 

This subsection answers the first research question and delves into the research trends in 196 
electrochemical model-based battery state estimation. Specifically, it examines the publication year, 197 
the academic journals, and the specific keywords utilized within these screened articles. 198 
 199 
3.1.1 Year 200 

Fig. 3 illustrates the annual publication trend of research articles focusing on battery state 201 
estimation using electrochemical models. Commencing in 2006 with the paper of Santhanagopalan et 202 
al. [74] , a steady growth in the number of such studies is evident. Notably, there has been a marked 203 
upsurge in pertinent publications since 2020, signifying an escalating interest among researchers 204 
within this domain. Especially in 2023, the number of publications called a greater increase in the 205 
previous years, indicating that the battery state estimation based on electrochemical model has 206 
attracted more and more researchers' attention. 207 
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 208 
Fig. 3. Annual paper publication trends. 209 

 210 
 211 

3.1.2 Journals 212 
 213 

Fig. 4 demonstrates the distribution trend of published articles in this field. Journals with less than 214 
2 publications are classified as Others. Research in this domain is predominantly featured in high-215 
impact factor journals specializing in electrochemistry, control, and energy. This can be attributed to 216 
the interdisciplinary nature of the subject, necessitating an amalgamation of expertise in 217 
electrochemistry, control, and energy applications. The leading three journals contributing to this area 218 
of research include Journal of Power Sources (17), IEEE Transactions on Control Systems 219 
Technology (14), and Journal of Energy Storage(10). 220 

 221 
Fig. 4. Trends in journal publication. 222 

 223 
 224 

3.1.3 Keywords 225 
 226 

In this subsection, a keyword analysis of the 102 selected articles is conducted, noting that 8 (ID1, 227 
ID12, ID27,ID30, ID41, ID48, ID49, ID72) of these articles did not provide keywords. Therefore, a 228 
total of 94 articles that provided keywords are analyzed. A word cloud figure is employed to illustrate 229 
the frequency of the keywords. Fig.5 exhibits the results, with larger font sizes signifying higher 230 
frequencies of the corresponding keywords. This visualization offers a rapid understanding of the 231 
primary themes and concepts underpinning the research. 232 
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"Lithium-ion battery" and "Lithium-ion batteries" are the most frequently employed keywords, 233 
while "Electrochemical model" is also frequently mentioned. "State of charge", "State of charge 234 
estimation" and "SOC estimation" are the most commonly cited battery state keywords, followed by 235 
"State of health". The "Pseudo-two-dimensional model" and the "Single particle model" are the two 236 
most prevalent electrochemical models. "Extended Kalman filter" and "Kalman filter" are the most 237 
widely used methods for battery state estimation. The multiple mentions of "Battery management 238 
system" and "Battery management systems" indicate researchers' interest in the application of battery 239 
state estimation methods within battery management systems. "Parameter identification" also appears 240 
with high frequency, highlighting its importance in model-based battery state estimation. The 241 
accuracy of the battery model parameters greatly influences the final estimation results, underscoring 242 
the significance of identifying the parameters of the battery model. 243 

 244 

 245 
Fig. 5. Word cloud for keywords. 246 

 247 
 248 

3.2 RQ2: What electrochemical battery models were used for battery state estimation? 249 
This subsection answers the second research question. Specifically, scalability, programming 250 

language and software, battery material, model selection, model simplification and parameter 251 
identification. 252 
 253 
3.2.1 Scalability 254 

Scalability, in the context of the use of battery, typically encompasses three levels [122]: cell, 255 
module, and pack. A cell is the fundamental unit, which is connected in series or parallel 256 
configurations to create a module. Subsequently, multiple modules are interconnected in series or 257 
parallel arrangements to form a comprehensive battery pack. This hierarchical structure exemplifies 258 
the scalability concept in battery formation. The statistical results on the battery state estimation for 259 
each battery formation level are shown in Table 3.  260 

Of the 102 articles analyzed, all focused on cell-level state estimation algorithms. A mere 4 261 
studies extended the cell-level battery state estimation to encompass both module and pack levels. 262 
Article ID 37 investigates SOC estimation for a battery pack comprising 6 single cells connected in 263 
series. Similarly, article ID 73 explores SOC estimation for a battery pack containing 4 single cells 264 
connected in series. And article ID 53 examines SOC and SOT for a battery pack with 12 single cells 265 
connected in series. ID87 uses electrochemical model to study the battery SOC and SOT estimation 266 
for the case where the cells are connected in series or in parallel. Most research focuses on cell-level 267 
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because modeling and state estimation for single cell is relatively straightforward. The models are 268 
easier to construct, and simulations and experiments are simpler to conduct. In contrast, battery packs 269 
and modules consist of multiple cells connected in series or parallel, leading to more complex 270 
electrical and thermal coupling effects, which make state estimation significantly more challenging. 271 
These findings suggest that most of the current research in this domain is centered on cell-level state 272 
estimation, with minimal investigation into module-level and pack-level state estimation. 273 
 274 

Table 3 Battery formation results. 275 

 Number Article ID 

Cell 102 All Articles 

Module or pack 4 ID37, ID53, ID73, ID87 

 276 
3.2.2 Programming language and software 277 

In this study, the usage of programming languages and software in the analyzed papers is 278 
quantified. The articles mentioned the programming language or software utilized, with the results 279 
presented in Table 4.  280 

It is evident that MATLAB (57) is the most frequently employed software, primarily because it is 281 
highly suited for control algorithm development and facilitates the design of battery state estimation 282 
algorithms. Moreover, MATLAB offers a comprehensive library of functions that streamline battery 283 
modeling and parameter identification. 284 

COMSOL Multiphysics (19) is the second most used software, with its battery simulation results 285 
typically serving as benchmarks or points of comparison to verify the accuracy of proposed models or 286 
battery state estimation methods. LabVIEW (2) is generally utilized in hardware-in-the-loop testing, 287 
while Fortran (2), C++ (1), and C (1) are employed for battery simulation to reduce the calculation 288 
time. 289 

Given the complexity of electrochemical modeling, some open-source battery models can be 290 
leveraged as a foundation for battery state estimation research. Examples of such models and their 291 
associated programming languages include Slide (C++) [123], DUALFOIL (Fortran) [124], fastDFN 292 
(MATLAB) [125], LIONSIMBA (MATLAB) [126], and PyBaMM (Python) [127].  293 
 294 

Table 4 Programming language and software 295 

Programming 

language and 

software 

Number Article ID 

MATLAB 57 ID1, ID3-ID7, ID9-ID11, ID13, ID14, ID16-19, ID21-23, ID25, 

ID27, ID29, ID30, ID31, ID33, ID40, ID41, ID43, ID46, ID51, 

ID53, ID57, ID59, ID60, ID62, ID63, ID65-71, ID73, ID74, ID83- 

90, ID92, ID97-100 

COMSOL 19 ID7, ID11, ID22, ID23, ID25, ID28, ID31, ID39, ID43, ID44, 

ID53, ID56, ID59, ID66, ID68, ID71, ID85, ID90, ID99 

LabVIEW 3 ID13, ID57, ID73 

Fortran 2 ID12, ID71 

C++ 1 ID30 

C 1 ID30 

 296 
3.2.3 Materials 297 
 298 

The active materials in the battery define the voltage boundaries and the shape of the cell voltage 299 
curve. Since mostly carbon based materials are used as negative electrode the battery types are named 300 
after the cathode material [128]. 301 

Of the 103 articles analyzed, 87 articles mention the battery materials used in their modeling. 302 
Currently, the most researched battery types in this field are Lithium Cobalt Oxide (LCO) (25), 303 
Lithium Iron Phosphate (LFP) (25), and Lithium Nickel Manganese Cobalt Oxide (NMC) (24). 304 
Lithium Manganese Oxide (LMO) (9) and Lithium Nickel Cobalt Aluminum Oxide (NCA) (6) are 305 
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also prevalent lithium battery cathode materials. LMO-NMC signifies a combination of LMO and 306 
NMC materials. All the papers report graphite or Mesocarbon Microbeads (MCMB) as the negative 307 
electrode materials. Table 5 provides a list of the corresponding papers for each positive electrode 308 
material for reference. Since many of the parameters in electrochemical modeling are related to their 309 
materials, most of the papers in Table 5 list or cite the model parameters used and can be used as a 310 
reference for the reader. 311 

 312 
Table 5 Positive electrode materials 313 

Positive 

electrode 

materials 

Number Article ID 

LCO 25 ID5, ID14, ID21, ID29, ID35, ID36, ID40, ID43, ID46, ID52, 

ID55, ID60, ID61, ID63, ID67, ID69-73, ID78, ID87, ID94, ID98, 

ID102 

LFP 25 ID4, ID7-9, ID18, ID28, ID31, ID32, ID37, ID39, ID42, ID48, 

ID49, ID59, ID65, ID74, ID75, ID79, ID81,ID86, ID88, ID89, 

ID96, ID100, ID101 

NMC 24 ID1, ID11, ID13, ID17, ID19, ID23, ID25, ID30, ID33, ID34, 

ID39, ID53, ID54, ID57, ID58, ID77, ID80, ID82, ID84, ID85, 

ID89, ID93, ID97, ID99 

LMO 9 ID2, ID6, ID15, ID22, ID38, ID44, ID53, ID56, ID66 

NCA 6 ID39, ID53, ID64, ID83, ID89, ID91 

LMO-NMC 3 ID26, ID62, ID76 

 314 
 315 
3.2.4 Model selection 316 

 317 
 318 

Fig. 6. Electrochemical Model. 319 
 320 
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This subsection provides an overview of the battery models employed in the screened papers. 321 
Based on our screened literature, electrochemical battery models can be broadly categorized into three 322 
main types as shown in Fig. 6. The first category is the P2D model, which serves as the foundational 323 
framework for all other electrochemical models. The P2D model provides a comprehensive 324 
description. However, when this model is simplified by reducing the multiple particles to a single 325 
representative particle, it is referred to as the Single Particle Model with electrolyte (SPMe). Further 326 
simplification occurs in the Single Particle Model (SPM), where the concentration diffusion process 327 
in the electrolyte is disregarded, and an averaged concentration value is used instead. These 328 
hierarchical models—P2D, SPMe, and SPM—reflect varying levels of complexity and approximation, 329 
offering different trade-offs between computational efficiency and accuracy depending on the specific 330 
application requirements. The results are presented in Table 6. Notably, all battery models are 331 
simplifications based on the P2D model. If that are not specifically named in the papers, are then 332 
categorized under the P2D category.  333 

Out of the total, 47 articles utilized SPM, which offer significant simplification, enabling the 334 
design of battery state estimation algorithms with reduced computational effort. The SPM [129] is a 335 
simplified model, positing that a lithium-ion battery consists of a single representative particle for 336 
each electrode (cathode and anode), neglecting the spatial distribution of potential and concentration 337 
within the electrodes. The average-electrode model (AEM) ( ID3, ID10, ID32, ID41, ID42), a type of 338 
the SPM model that replaces both lithium-ion concentration and current density with average values. 339 
Instead of a single representative particle, the AEM considers the entire electrode's average behavior. 340 
Consequently, the AEM captures the spatial distribution of lithium-ion concentration and potential 341 
within the electrodes, offering a better understanding of battery performance and efficiency. As a 342 
result of this simplification, the SPM model is less accurate during high-current charging and 343 
discharging. To address this, SPMe has been proposed.  344 

Twenty-five papers have utilized the SPMe. It is worth noting that different studies may use 345 
varying terminologies, such as Extended Single Particle Model (ESPM) ( D14, ID25, ID33, ID54, 346 
ID58, ID59, ID62, ID79, ID80, ID84, ID85). However, these models are fundamentally based on the 347 
SPM with additional physical equations to describe the electrolyte dynamics [130]. Meanwhile,  ID74 348 
proposes a battery model considering the electrical double layer effect and performs battery state 349 
estimation using this model. ID81 employed Many-Particle Model (MPM). MPM differs from SPMe 350 
in that there is not just one particle in the electrode, but multiple particles. 351 

Thirty articles employed the P2D model as a basis for simplification when designing battery state 352 
estimation algorithms. Due to the varying simplifications used in most papers, and the lack of specific 353 
model names, they are collectively classified as P2D models. Some authors named their P2D model as 354 
1-dimensional models. ID24 employs a model proposed by Subramanian et al. [131], simplifying it 355 
through a constant electrolyte concentration and an approximate solution to the diffusion equation. 356 
ID70 applies the model proposed by Forman et al. [132].  357 

The aforementioned results outline the battery models used in the analyzed papers. However, 358 
these models often require further simplification before being applied to battery state estimation. The 359 
following subsection examines the model simplification methods employed in these articles. 360 

 361 
Table 6 Battery model types 362 

Model Number Article ID 

SPM 47 ID1-5, ID9, ID10, ID12, ID15, ID17, ID18, ID20, ID28, 

ID29, ID32, ID35-38, ID40-42, ID48-ID52, ID55, ID57, 

ID65-68, ID70, ID72, ID73, ID76-ID78, ID82, ID87, 

ID88,ID94-96, ID98, ID100 

SPMe 25 ID8, ID13,  D14, ID21, ID22, ID25, ID26, ID30, ID33, 

ID44,  ID54, ID56, ID58, ID59, ID62, ID74,  ID79, ID80, 

ID81,  ID84, ID85, ID91, ID93, ID101, ID102 

P2D 30 ID6, ID7, ID11, ID16, ID19, ID23, ID24, ID27, ID31, 

ID34, ID39, ID43, ID45-47, ID53, ID60, ID61, ID63, 

ID64, ID69, ID71, ID75, ID83, ID86, ID89, ID90, ID92,  

ID97, ID99 
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 363 
3.2.5 Model simplification 364 

Electrochemical models encompass numerous PDE, which present considerable complexity in 365 
solving and are unsuitable for real-time computations. Consequently, battery model simplification is 366 
typically necessary for battery state estimation. In particular, it is important to note that the accuracy 367 
of a simplified model will necessarily be reduced. Model simplification is a matter of finding a 368 
balance between model accuracy and model complexity. As illustrated in the selected articles, various 369 
methods exist for battery model simplification, namely: simplification of physical processes, finite 370 
method and function approximation, spectral method, transfer function, projection method and 371 
Artificial intelligence (AI) method. Since many of the screened articles directly use other researchers 372 
proposed models or do not mention the specific process of model simplification, this section only 373 
summarizes articles that explicitly propose model simplification methods. The results are displayed in 374 
Table 7. 375 

 376 
Table 7 Simplification approach 377 

Method Number Article ID 

Finite method 27 FDM: 

ID3, ID9, ID10, ID15, ID16, ID17, ID20, ID27, ID30, ID35, 

ID38, ID41, ID46, ID49, ID51, ID52, ID54, ID60, ID65, ID77, 

ID81, ID95 

FVM: 

ID71, ID97 

FEM: 

ID50, ID90, ID99 

Function approximation 37 Parabolic approximation : 

ID4, ID5, ID14, ID18, ID21, ID22, ID24, ID32-34, ID36, ID37, 

ID40, ID42, ID47, ID53, ID55, ID64, ID66-69,  ID71, ID72-75, 

ID78, ID79, ID80, ID84, ID88, ID89, ID93, ID94, ID96, ID101 

Spectral method 6 Chebyshev polynomial: 

ID6, ID43, ID59, ID71, ID86, ID99 

Transfer function 22 Padé approximation: 

ID1, ID2, ID12, D13, ID19, ID25, ID26, ID29, ID44, ID45, 

ID52, ID56, ID57, ID70, ID76, ID85, ID91, ID92, ID100 

Discrete realization algorithm: 

ID31, ID52 

Fractional-order functions: 

ID82 

Projection method 4 ID7, ID23, ID52, ID83 

AI method 1 ID102 

 378 
(1) Simplification of physical processes 379 
Simplification of physical processes means directly ignoring some reaction processes considered 380 

as unimportant. For instance, the SPM reduces the electrode to a particle, while the AEM employs the 381 
average value to represent the lithium-ion concentration and current density. Most articles adopt 382 
methods that simplify physical processes, most frequently by converting a distribution to a constant or 383 
average value. This approach effectively streamlines the model and minimizes computational effort 384 
while maintaining model accuracy within certain boundaries like low C-rate. In ID11 and ID97, the 385 
lithium diffusion in the solid phase is simplified by equivalent circuit model. This simplifies the 386 
lithium diffusion physical processes within the cell, thus making the model simpler. 387 

The approach of simplifying physical processes is very convenient to implement and allows for 388 
the simplification of specific parts as needed, striking a good balance between model complexity and 389 
accuracy. Unlike the methods discussed  later, which focus on how to solve PDE and enhance the 390 
speed and accuracy of their solutions. Simplification of physical processes can be combined with the 391 
methods introduced later to further simplify the model. 392 
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(2) Finite method 393 
Finite method refers to the technique of converting a continuous spatial domain into a finite set of 394 

discrete points or elements, which is crucial for solving PDE that characterize a wide range of 395 
physical and engineering phenomena. The finite difference method (FDM) and the finite volume 396 
method (FVM) are frequently employed. The finite element method (FEM) is another well-known 397 
approach. The advantage of finite method is that it can be easily applied, and it generally used as 398 
benchmark methods to solve PDE. But the accuracy of the finite method is related to how many nodes 399 
it uses for computation, the more nodes you have the more accurate results you can get, but it also 400 
means longer computation time and larger memory requirements.  401 

For finite method, there are also methods to reduce the amount of computation while ensuring 402 
high accuracy. Simplification using the theory of largescale systems, an FDM containing 50 nodes 403 
can be simplified to contain only 5 nodes( ID3, ID10). In ID 16, a second-order Runge-Kutta method 404 
to solve an FDM with 10 node. But as the number of FDM nodes increases, the solution of Runge-405 
Kutta method will be unstable. ID97 uses the Implicit-Explicit Method to discretize the FVM, which 406 
is typically faster and more accurate to solve compared to Implicit Euler Method. 407 

The advantage of the finite method is that it is very easy to apply, and the number of nodes can be 408 
adjusted according to the actual needs to balance the accuracy and computational speed. It is possible 409 
to combine different discretization methods to speed up the computation. The finite method is often 410 
used as a baseline method for solving PDE. 411 

(3) Function approximation  412 
The function approximation method is a widely adopted approach for simplifying complex 413 

models by replacing computationally or expressively complex parts with simpler functions. The most 414 
common function approximation method used in electrochemical model is the parabolic 415 
approximation method [131]. Based on the results in Table 7, it can be seen that the number of papers 416 
employing the parabolic approximation method is the greatest. This is because it’s very easy to apply. 417 
And the calculation is very fast, which is crucial for application in BMS. At the same time this 418 
method also retains the physical meaning and can be used to directly calculate the average lithium-ion 419 
concentration and the surface lithium-ion concentration, which are two state quantities that are 420 
important for battery state estimation. However, it has the disadvantage of lower accuracy than other 421 
methods, especially at currents greater than 1C [133]. At the same time, the parabolic approximation 422 
method cannot add nodes to further improve the accuracy like finite method or spectral method. 423 
Nevertheless, if the goal is to develop battery state estimation algorithms that can be applied in a BMS, 424 
it is also a good choice due to its computational speed. 425 

(4) Spectral method 426 
Spectral methods are an efficient way to solve PDE and are also used to solve PDE in 427 

electrochemical models. In spectral methods, the function to be solved is expressed as a set of basic 428 
functions, with Chebyshev polynomials being the most common basis function. All retrieved papers 429 
using spectral methods employ Chebyshev polynomials as basis function. Spectral methods have been 430 
proven to generally offer higher accuracy and faster convergence rates compared to finite methods. 431 
Furthermore, accuracy can be further improved by increasing the number of nodes. However, a 432 
disadvantage is that they are complex to implement and require a strong background in mathematics, 433 
which is why only a few papers have applied this method. 434 

(5) Transfer function 435 
The transfer function method uses the Laplace transform, which converts a function of a real 436 

variable t (usually time) into a function of a complex variable s (complex frequency). The transform 437 
has the useful property of converting differential equations to algebraic equations and simplifying the 438 
model. When the PDE is converted to the frequency domain, it can be solved using different methods. 439 
The most commonly used solution method is the Padé approximation. There are also a very few 440 
screened papers that use discrete realization algorithm and fractional-order functions for PDE solving. 441 
The transfer function approach has the advantage of high accuracy and the choice of different orders 442 
of approximation to balance accuracy and computational speed. At the same time, choosing a lower 443 
order for the approximation may cause the model to perform poorly in the high frequency part. 444 

(6) Projection method 445 
The projection method is a mathematical technique used to solve PDE. This method simplifies the 446 

problem solving process by finding approximate solutions by projecting an infinite-dimensional 447 
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problem into a finite-dimensional subspace. Similar to spectral methods, projection methods can also 448 
be complex to implement in programming. Consequently, fewer papers employing projection methods 449 
were identified in the screened literature. 450 

(7) AI method 451 
 AI method can also be used to solve PDEs. In ID102, the authors introduced a novel approach 452 

termed the Physics-Informed Multiple-Input Operator Network (PI-MIONet) for solving PDEs within 453 
electrochemical models. Unlike traditional numerical methods typically employed for PDE resolution, 454 
this AI-driven model leverages the principles of physics to inform the network's learning process. The 455 
findings demonstrated that PI-MIONet is not only capable of accurately solving the PDEs inherent in 456 
electrochemical models but also offers a potentially more efficient and scalable alternative to 457 
conventional numerical techniques. This advancement underscores the growing potential of AI 458 
models in complex scientific computations, particularly in fields where traditional methods may be 459 
computationally intensive or challenging to implement. 460 

 461 
3.2.6 Parameter identification 462 

The accuracy of the battery model is directly affected by the correct selection of the battery model 463 
parameters. The battery model parameters also have a significant impact on the accuracy of the 464 
model-based state estimation results. The identification of the parameters of the electrochemical 465 
model is relatively complicated, and in the research papers on electrochemical model-based state 466 
estimation method, the battery parameters are generally adopted from the existing papers. However, 467 
even for the same model and type of battery, the battery parameters of each battery may be slightly 468 
different due to manufacturing and other reasons. So, to improve the accuracy of the battery state 469 
estimation algorithm, it is necessary to re-identify some parameters of the battery model. Among the 470 
102 articles screened, 27 articles mentioned battery parameter identification, and Table 8 summarizes 471 
them. 472 

Within the scope of these 27 articles, particle swarm optimization (PSO) is the most used methods 473 
for parameter identification. The majority of these papers focus on re-identifying a limited number of 474 
parameters in the model, while still relying on data from other publications for the remaining 475 
parameters. Notably, only ID59 and ID84 re-identify over 20 parameters. Additionally, ID93 is also a 476 
good choice to perform parameter sensitivity analysis first and then select high sensitivity are 477 
parameters for estimation. 478 

Operating conditions employed for parameter identification generally fall into two categories: 479 
constant current charging and discharging, and dynamic operating conditions. Most articles 480 
exclusively utilize either constant current conditions or dynamic conditions. This is because it is 481 
simpler to use only one operating condition for battery parameter identification. However, ID59, ID60, 482 
and ID84 stand out by incorporating both types of conditions for battery parameter identification. 483 
Employing a more comprehensive range of conditions yields more accurate battery parameters. 484 
Conversely, relying on a single condition increases the likelihood of the algorithm identifying only a 485 
local optimum rather than a global optimum solution. 486 

Temperature exerts a significant influence on battery model parameters. A mere 4 papers (ID1, 487 
ID4 ID77, and ID84) consider experimental battery data at multiple temperatures for parameter 488 
identification. The remaining papers consider only a single temperature. Broadly speaking, 489 
incorporating a greater variety of experimental data conditions and temperature conditions contributes 490 
to obtaining more precise battery model parameters. 491 
 492 

Table 8 Summary of battery parameters identification method 493 

Article 

ID 
Approach 

Identified 

Parameters 
Experimental Data 

Ambient 

Temperature 

ID1 
Adaptive particle 

swarm optimization  
6 0.1C discharge 0°C,25 °C,45°C 

ID4 
least square 

optimization 
16        - 

0 °C, 15 °C, 25°C, 

35°C, 55°C 

ID5 PSO 12 0.2C discharge 20°C 
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ID16 GA 7 DST 25 °C 

ID17 PSO 4 - - 

ID18 GA - - - 

ID20 
Levenberg–

Marquardt algorithm 
- CCCV (1C) charge 25 °C 

ID36 PSO - - - 

ID38 
Levenberg–

Marquardt algorithm 
7 - - 

ID49 
least square 

optimization 
7 - - 

ID51 
least square 

optimization 
6 - - 

ID58 GA 16 HPPC 23 °C 

ID59 Ant Lion Optimizer 21 2C discharge US06 DST UDDS 25 °C 

ID60 

Gradient free function 

minimization 

algorithm 

9 

A set of four charges (1 A, 2A and 

3A at constant current and 4A with 

pulse current demand) and four 

discharges (2 A, 3.5A and 5A at 

constant current and 6A pulse 

current demand) 

- 

ID62 Nelder-Mead - 1C charging/discharging - 

ID74 GA 6 0.1C charging/discharging 25 °C 

ID77 GA 7 
0.05C, 0.33C, 0.5C, and 1C 

charging/discharging  

5°C,15°C,25°C,35

°C,45°C,55°C 

ID79 

Linear decreasing 

weight particle swarm 

optimization  

6 
From 0.1 to 2C 

charging/discharging  
25 °C 

ID84 PSO 26 
US06, DST and BJDST starting 

from different SOC levels 
0°C,25°C,45°C 

ID86 PSO 11 UDDS 25 °C 

ID88 PSO 3 1C, 2C, 3C charging/discharging - 

ID91 PSO - UDDS - 

ID93 PSO 8 - - 

ID94 PSO 11 - Room temperature 

ID96 PSO 6 1C, 2C charging/discharging 25 °C 
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ID99 PSO 6 
0.5C, 0.7C, 0.9C, 1C, 1.5C 

charging/discharging 
- 

ID101 

Multi-verse 

optimizer (MVO) 

algorithm 

15 - - 

 494 
 495 
3.3 RQ3: Which battery state was selected for estimation and what algorithms were used? 496 

This subsection shows which battery states researchers have focused on and what methods they 497 
have used to state estimation. 498 
 499 
3.3.1 State 500 

Fig. 7 provides an overview of the battery states estimated in the included articles. A total of 83 501 
articles addresses the estimation of SOC, demonstrating that the majority of research concentrates on 502 
this particular aspect. The SOH ranks second, with 26 articles examining concerns related to battery 503 
aging and lifespan. Additionally, 11 articles investigate the temperature estimation (SOT) of the 504 
battery, typically focusing on both the internal core temperature and the surface temperature. A 505 
smaller subset of studies, comprising 4 articles, employs electrochemical models to estimate the SOP 506 
of the battery. Furthermore, 2 articles utilize electrochemical models to analyze SOB. In summary, the 507 
SOC and SOH are the two battery states that currently garner the most attention from researchers. 508 
SOE and SOF are not mentioned by any article. The specific results can be found in Appendix 1. 509 

 510 

 511 
Fig. 7. Battery state statistics results. 512 

 513 
Fig. 8 illustrates the yearly distribution of battery states, revealing that the SOC consistently 514 

remains the predominant focus across all years. In recent times, there has been a noticeable increase in 515 
the number of researchers concentrating on the SOT, SOP, and SOH. As these three states are 516 
intimately connected to battery safety, this shift in research interest underscores a growing emphasis 517 
on monitoring and ensuring the safe usage of the battery. It is worth noting that the sum of the battery 518 
states discussed above exceeds the total number of articles. The reason for this discrepancy is that 519 
many of the articles involve estimates for more than one battery state. From Appendix 1, a total of 80 520 
articles focused on estimating a single battery state, indicating that the majority of the research is 521 
centered around one specific state, typically either the SOC or SOH. Furthermore, 20 articles 522 
estimated two battery states concurrently, with the most prevalent combinations being SOC&SOH or 523 
SOC&SOT. A mere two articles (ID10 and ID11) estimated three battery states simultaneously. ID10 524 



18 
 

estimates SOC, SOT, and SOB while ID11 estimates SOC, SOT, and SOH. Notably, no papers were 525 
found to estimate more than three battery states at once. 526 

 527 
 528 

Fig. 8. Battery state results distributed by year. 529 
 530 

 531 
3.3.2 Algorithms 532 

In this subsection, we provide a detailed account of the specific methods employed for battery 533 
state estimation in the reviewed literature for each battery state. 534 

(1) SOC 535 
In electrochemical models, the SOC is typically represented by calculating the normalized 536 

lithium-ion concentration in electrodes. This method provides a quantitative measure of the SOC by 537 
comparing the current concentration of lithium-ions to the maximum possible concentration, thus 538 
indicating the battery's charge level. The SOC is a critical parameter for assessing the performance 539 
and efficiency of the battery, and it is determined using the following equation: 540 

𝑆𝑂𝐶 =  
𝐶𝐿𝑖 − 𝐶𝐿𝑖,𝑚𝑖𝑛

𝐶𝐿𝑖,𝑚𝑎𝑥 − 𝐶𝐿𝑖,𝑚𝑖𝑛
 

(1) 

where 𝐶𝐿𝑖 represents the average lithium-ion concentration in the electrode, 𝐶𝐿𝑖,𝑚𝑖𝑛 is the minimum 541 

lithium-ion concentration, and 𝐶𝐿𝑖,𝑚𝑎𝑥  is the maximum lithium-ion concentration. This equation 542 

normalizes the concentration between 0% and 100%, providing a standardized measure of the 543 
battery's charge state. Typically, the SOC of the anode is used to represent the overall SOC of the 544 
battery. In some cases, the average SOC of both the anode and cathode is employed to provide a more 545 
comprehensive indication of the battery's SOC. Therefore, SOC estimation algorithms based on 546 
electrochemical models primarily focus on estimating the average lithium-ion concentration (𝐶𝐿𝑖 ) in 547 
both the anode and cathode. This estimated average lithium-ion concentrations are then used to 548 
calculate the overall SOC of the battery by Eq. (1). 549 

There are three primary categories of SOC estimation methods based on electrochemical models: 550 
model calculation method, filter, observer and AI method. The specific SOC estimation techniques 551 
implemented in each paper are summarized in Table 9. 552 

1) Model calculation method: The model calculation method does not involve designing filters 553 
or observers for SOC estimation. Instead, it directly utilizes electrochemical models for computation, 554 
typically calculating the lithium-ion concentration and subsequently deriving the battery's SOC. The 555 
advantage of this method is that it is straightforward, but it cannot handle the influence of 556 
measurement noise and unknown initial conditions, which makes it difficult to guarantee high 557 
accuracy in practical applications in BMS. To overcoming the effects of initial value errors, ID73 and 558 
ID89 use the OCV method in the initial phase of the algorithm to compute the correct initial value, 559 
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and then use this correct initial value to initialize the battery model. This solves the problem of the 560 
initial value, but it also cannot deal with the interference caused by measurement noise. 561 

2) Filters: The second primary category for SOC estimation encompasses various types of filters. 562 
The primary purpose of a filter is to estimate the state of a system in the presence of noise. It not only 563 
relies on the current measurements but also integrates previous state estimates and the system's 564 
dynamic model. A filter effectively reduces the impact of measurement noise, thereby providing a 565 
more accurate state estimation.  566 

The Kalman filter (KF) is the most commonly used filter. The original KF requires that the 567 
dynamic and measurement processes be linear. However, electrochemical models are often nonlinear, 568 
making it necessary to adapt the KF to handle nonlinear systems. As a result, variations of the KF that 569 
can accommodate nonlinearity are commonly employed in the design of filters based on 570 
electrochemical models. The most widely used variations include the Extended Kalman Filter (EKF), 571 
the Unscented Kalman Filter (UKF), and the Cubature Kalman Filter (CKF). Among these, the EKF 572 
is the most frequently employed option, often serving as the benchmark algorithm for comparison 573 
purposes. Several studies (ID10, ID26, ID27, ID32, ID41, ID42, ID43, ID45, ID47, ID52, ID55, ID60, 574 
ID67, ID68, ID71, ID72, ID74, ID79, ID81and ID98) have utilized the EKF. Numerous filter 575 
variations based on the EKF have also been implemented, such as the dual EKF in ID19 and ID100, 576 
adaptive EKF in ID33, ID37 and ID67, Lebesgue-sampling-based EKF in ID36 and ID94, EKF 577 
combined with smoothing variable structure filter in ID3. The UKF has been applied in ID18, ID23, 578 
ID31, ID47, ID64, ID72, ID75, and ID102, while adaptive UKF filter is used in ID25, dual UKF in 579 
ID46, adaptive square-root sigma-point KF in ID13. Sigma-point KF and UKF are the same filter with 580 
different name. There are also other KF-based variations that have been used for SOC estimation, 581 
such as: singular evolutive interpolated Kalman filter (SEIKF) in ID11, cubature Kalman filter (CKF) 582 
in ID84, adaptive CKF in ID80, and square-root CKF in ID59. The EKF linearizes the system model 583 
by performing a first-order Taylor expansion of the nonlinear system. Specifically, EKF uses the 584 
Jacobian matrix to approximate the nonlinear functions of the system with linear ones. The advantage 585 
of EKF is its relatively low computational complexity. However, its drawback is that it can lead to 586 
significant estimation errors in highly nonlinear systems. The UKF utilizes the Unscented 587 
Transformation to directly propagate the mean and covariance, capturing the key characteristics of the 588 
distribution by selecting a set of "sigma points" in the state space, without requiring linearization. 589 
Therefore, UKF typically provides better estimation accuracy than EKF, although at the cost of 590 
increased computational complexity. The CKF generally performs better when dealing with high-591 
dimensional systems, making it particularly well-suited for situations where there are many states to 592 
estimate. 593 

Another prominent filter type is the particle filter (PF), which has been employed in ID26, ID34, 594 
ID64, ID86, and ID93. The advantage of the PF is its ability to directly handle nonlinear systems; 595 
however, its computational complexity is higher than that of the KF. Some studies have also explored 596 
other filters for SOC estimation, such as moving-window filtering in ID7, State-dependent-Riccati-597 
equation filter in ID9, and smooth variable structure filter in ID65.  598 

3) Observers: The observers are another common method for SOC estimation. The observer is 599 
designed to estimate the internal state of a system by measuring its output. Compared to filters, 600 
observers generally have lower computational complexity, as they primarily rely on the system model 601 
for feedback adjustments and do not need to handle large amounts of noise and uncertainty. 602 

Nonlinear observers are utilized in ID22, ID29, ID50, ID51 and ID87, ID91, ID95, while ID5 603 
employs a nonlinear observer with terminal voltage feedback injection. ID40 uses a feedback observer. 604 
Nonlinear adaptive observers are employed in ID17, ID49, and ID70.  ID24 features an output error 605 
injection observer, whereas ID12 and ID78 incorporate backstepping PDE state observers. ID20 and 606 
ID56 utilize proportional-integral (PI) observers, and ID44 opts for a proportional-integral-derivative 607 
(PID) observer. Luenberger observers are employed in ID69, with ID66 integrating a Luenberger 608 
observer combined with a Recursive Least Squares method. ID21 makes use of moving horizon 609 
estimation (MHE), and both ID32 and ID42 employ sliding-mode observers with a uniform reaching 610 
law (SMO-URL) as well as sliding-mode observers with an exponential reaching law (SMO-ERL). 611 
Lastly, ID28 incorporates observers with the backstepping method and H-infinity observers.  612 

4) AI method: AI methods have also been employed for SOC estimation based on 613 
electrochemical models. In ID18, a neural network was added to the SPM model to correct its errors, 614 
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and a UKF was designed based on this hybrid model to perform SOC estimation. A combination of 615 
GA and electrochemical model is used in ID92 for battery SOC estimation. In ID99, the internal state 616 
information from the electrochemical model is used as input to train a neural network model for 617 
estimating SOC. In ID102, a neural network was used to solve the PDEs in the electrochemical model, 618 
and a UKF was designed based on this hybrid model to estimate the battery's SOC.  The studies 619 
mentioned above indicate that AI methods show potential in state estimation based on electrochemical 620 
models. 621 

 622 
Table 9 SOC estimation method in corresponding paper results 623 

Method Article ID 

Model Calculation ID1, ID4, ID14, ID15, ID35, ID53, ID58, ID63, ID64, ID73, ID83, 

ID89, 

Filters  ID3, ID7, ID9-11, ID13, ID18, ID19, ID23, ID25-27, ID30-33, ID36, 

ID37, ID41-43, ID45-47, ID52, ID55, ID59, ID60, ID64-68, ID71, 

ID72, ID74, ID75, ID79-81, ID84, ID86, ID93, ID94, ID98, ID100, 

ID102 

Observers ID5, ID12, ID17, ID20-22, ID24, ID28, ID29, ID32, ID40, ID42, ID44, 

ID49-51, ID56, ID66, ID69, ID70, ID78, ID87, ID91, ID95 

Machine learning ID18, ID92, ID99, ID102 

 624 
 625 

(2) SOH 626 
The electrochemical model can describe the physical process of battery aging well, which will be 627 

beneficial for SOH estimation. The SOH estimation methods used in the screened articles can also be 628 
classified into 4 categories, and the specific results are presented in Table 10. 629 

1) Model calculation method: ID1 employs Gaussian process regression in conjunction with an 630 
SPM to calculate the remaining battery capacity. ID2, ID8, ID88, and ID96 develop an SPM-based 631 
battery aging model, which is then used to calculate the battery capacity loss. Empirical data was used 632 
to establish the relationship between battery capacity and the number of cycles in ID16. This was 633 
achieved by applying a third-order polynomial equation. ID35 implements a back-propagation neural 634 
network to estimate battery capacity and subsequently integrates the updated capacity into an SPM to 635 
compute the capacity-based SOH and the internal resistance-based SOH. The final SOH is determined 636 
as the minimum of these two values. Finally, ID39, ID61 and ID90 develop a battery aging model 637 
based on the P2D model. Most papers model battery aging and then directly apply the model's 638 
calculations to the aging process. This is equivalent to an open-loop estimation of SOH. 639 

2) Filters: ID11 estimates the SOH utilizing the SEIKF. ID19 applies DEKF for SOH estimation. 640 
ID26 employs the Kalman smoother, PF, and EKF to estimate SOH. ID34, ID57, and ID62 utilize the 641 
PF for SOH estimation purposes. ID47 implements both the EKF UKF for estimating SOH. Lastly, 642 
ID52 and ID76 employ the EKF to estimate the SOH of the battery. ID101 uses PF to estimate SOH. 643 

3) Observers: ID12 employs a backstepping PDE state estimator for SOC estimation, and the 644 
SOH-related battery model parameters are estimated using the least squares method in conjunction 645 
with the SOC state estimation results.ID20 utilizes a PI observer to estimate the battery capacity and 646 
resistance. ID21 implements a MHE technique for SOH estimation. ID40 applies an adaptive 647 
observer-based SOH estimator by estimating the maximum lithium-ion concentration of anode. ID54 648 
uses an adaptive interconnected observer that adjusts itself based on the relationship between the 649 
system's components for better capacity estimation. Lastly, ID82 incorporates an iterative model-650 
based observer to estimate the internal resistance and capacity fade , which iteratively refines the 651 
estimation process to improve the accuracy of the SOH estimation.  652 

4) Machine learning: ID35 uses neural networks to estimate capacity and then update the battery 653 
model. 654 

 655 
 656 

Table 10 SOH estimation method in corresponding paper results 657 

Method Article ID 
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Model Calculation ID1, ID2, ID8, ID16, ID35, ID39, ID61, ID88, ID90, ID96 

Filters  ID11, ID19, ID26, ID34, ID47, ID52, ID57, ID62, ID76, 

ID101 

Observers ID12, ID20, ID21, ID40, ID54, ID82 

Machine learning ID35 

 658 
(3) SOT 659 
As illustrated in Table 11, a total of 11 articles focusses on estimating the SOT. ID10 develops a 660 

thermal model, which calculates both core and surface temperatures. ID53 utilizes a lumped 661 
temperature model to estimate the temperature. ID11 employs SEIKF to determine the bulk 662 
temperature. ID18 applies UKF to estimate the battery core temperature, while ID43 uses EKF to 663 
estimate the bulk temperature. ID46 leverages dual UKF to estimate the bulk, surface, and core 664 
temperatures. ID59 implements square-root CKF for temperature estimation, and ID28 uses an H-665 
infinity temperature observer to estimate the surface temperature. ID49 applies an adaptive observer 666 
for bulk temperature estimation, and ID78 utilizes a backstepping state observer to estimate the bulk 667 
temperature. ID87 uses a nonlinear observer to estimate the surface temperature. 668 

The battery surface temperature can typically be measured using cost-effective temperature 669 
sensors, which renders the need for estimating the battery surface temperature less crucial. According 670 
to the findings in ID46, in certain situations, the battery core temperature can be as much as 45 °C 671 
higher than the surface temperature. Relying solely on bulk temperature estimation makes it 672 
challenging to prevent thermal runaway in the battery. Therefore, it is essential to estimate the core 673 
temperature of the battery to ensure better safety management. 674 

 675 
Table 11 SOT estimation method in corresponding paper results 676 

Method Article ID 

Model Calculation ID10, ID53 

Filter  ID11, ID18, ID43, ID46, ID59 

Observer ID28, ID49, ID78, ID87 

 677 
(4) SOP and SOB 678 
A total of 4 articles (ID38, ID77, ID85, ID97) deal with the estimation of SOP, and there are 679 

fewer studies on SOP estimation based on electrochemical models. ID38 has calculated the SOP 680 
based on the lithium-ion concentration in the SPM, rather than using the commonly used terminal 681 
voltage and current. ID77 uses the grey wolf optimizer method for SOP estimation of batteries based 682 
on SPM. ID85 uses Gaussian process regression method to simplify the model and improve 683 
computational speed. Moreover, it proposes the concept of safe operation area (SOA), using the 684 
Electrode surface concentration, electrolyte concentration, slide-reaction overpotential and terminal 685 
voltage as indicators to set a safe operating range, and uses this as a constraint for the estimation of 686 
SOP. ID97 uses nonlinear model predictive control method for SOP estimation.  687 

ID10 employs an active equalization control strategy based on the SPM to compute the battery's 688 
SOB. Meanwhile, ID48 adopts a multivariable SOC/capacity balancing strategy, utilizing the ESPM 689 
as a foundation for calculating the battery's SOB. 690 
 691 
4 Discussion 692 

The discussion section delves into the current issues and future research directions faced by 693 
electrochemical model-based, as well as the limitations of this study. 694 
 695 
4.1 Issues and Future research 696 
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 697 
Fig.9. Future Research. 698 

 699 
Based on the results of Section 3, the current challenges and future research directions for battery 700 

state estimation based on electrochemical models are presented in Fig. 9, which specifically include: 701 
model scalability, parameterization, model simplification, multi-state joint estimation, and more use 702 
of internal battery information. 703 

 704 
4.1.1 Model Scalability 705 

As can be seen from the results of Section 3.2.1, most existing studies focus primarily on 706 
individual cell. However, in practical applications, individual cells are often connected in series and 707 
parallel to form battery modules or packs. Due to manufacturing processes, achieving perfect 708 
consistency among new single cells is difficult. As cells are used, inconsistencies between them tend 709 
to increase for various reasons, such as discrepancies in manufacturing, uneven temperature 710 
distribution within battery modules and packs, and other factors.  711 

This disparity indicates that treating the entire pack as a singular large battery cell may 712 
compromise battery safety assurance. Similarly, the state of a battery pack cannot be unequivocally 713 
deduced by merely amalgamating the states of its constituent cells. The rationale behind this lies in 714 
the understanding that the overall performance of a battery module or pack may not be contingent 715 
upon the summative performance of all individual cells. However, adopting an electrochemical 716 
model-based estimation for each cell unit poses its own set of challenges, particularly regarding data 717 
storage and computational capacity of processors. So, the state estimation of batteries after 718 
aggregation is also very worthy of research. We can choose to estimate only a few battery cells in the 719 
most critical positions, thereby reducing the computational load on the BMS processor. This approach 720 
also provides guidance for the SOA. Consequently, it is suggested that forthcoming research should 721 
accentuate the state estimation for battery modules and packs based on electrochemical models. ID87 722 
studies the state estimation of battery cells in series and parallel configurations based on an SPM 723 
model, which can provide a reference for subsequent research. 724 

 725 
4.1.2 Parameterization  726 

Parameter identification for electrochemical models is very challenging due to the fact that the 727 
measurement of many parameters requires high precision equipment, and some parameters can’t be 728 
measured directly. Furthermore, electrochemical models tend to be over-parameterized, meaning that 729 
two distinct sets of parameters may yield similar outputs. This complicates parameter estimation and 730 
raises the research threshold for studies based on electrochemical models. A notable issue is that 731 
many researchers do not provide complete battery parameters and test data in their publications. 732 
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In the future, further public disclosure of electrochemical model parameters and corresponding 733 
test data would be advantageous, as it could lower the research barrier for electrochemical models. 734 
This would not only benefit researchers working on battery state estimation and control based on 735 
electrochemical models but also facilitate cross-sectional comparisons of various methods. 736 
Additionally, there is currently a lack of comparative research on parameter identification methods, 737 
such as comparing the accuracy, computational speed, and stability of different methods. For instance, 738 
when performing parameter identification on batteries intended for secondary use, where each battery 739 
exhibits varying degrees of aging, it becomes necessary to identify parameters for each individual cell. 740 
If this process must be applied to 1000 cells and the chosen method is time-consuming, the total 741 
duration can become excessively lengthy. Therefore, it is crucial to identify a parameter identification 742 
method that not only ensures accuracy and stability but also operates with high computational 743 
efficiency. 744 

As observed in Section 3.2.6, there is a lack of standardized processes for parameter identification 745 
methods in battery models, with different researchers employing diverse methods, operating 746 
conditions, and temperatures. Parameter identification for electrochemical models often necessitates a 747 
comprehensive understanding of the model's operating mechanism, as well as sensitivity analysis, 748 
parameter grouping, and optimal experimental designs [134]. It would be worthwhile to propose a 749 
simple and practical battery parameters identification process. This will effectively lower the 750 
threshold for the use of electrochemical models. 751 

 752 
4.1.3 Model simplification 753 

Based on the findings presented in Section 3.2.5 and Section 3.2.6, it is evident that numerous 754 
battery models and associated simplification methods have been developed with the goal of battery 755 
state estimation. Statistically, the adoption of SPM-based models is by far the most prevalent. 756 
However, when it comes to further simplification of these models, researchers have employed diverse 757 
approaches, and there is a notable lack of cross-sectional comparisons. In particular, the lack of 758 
discussions regarding which simplification methods are suitable for designing battery state estimation 759 
algorithms. It must also be clear what limitations the simplifications imply like steady state 760 
(dis)charging, low C-rate or narrow temperature band.  If the application is targeting a BMS, then a 761 
comparison of model computation speeds is also critical. The results of ID53 indicate that an 762 
electrochemical model can be implemented in the BMS and offers higher accuracy than the ECM 763 
while only adding an acceptable amount of operating time. Given these circumstances, the 764 
investigation of model simplification for battery state estimation is an essential area for future 765 
research. A more comprehensive understanding of the most effective simplification methods will 766 
enable the development of improved battery state estimation algorithms, facilitating the application of 767 
electrochemical models in BMS. Additionally, according to the study in ID102, using AI methods for 768 
the simplification of electrochemical models, or developing hybrid models that combine AI with 769 
electrochemical models, are also promising research directions. 770 

 771 
4.1.4 Multi-state joint estimation 772 

As indicated by the findings in Section 3.3.1, current research primarily focuses on the estimation 773 
of individual battery states, with researchers designing specific estimation algorithms for each single 774 
state. However, in practical applications, different states are often interconnected, such as the 775 
estimation of SOP, which requires information on SOC. Compared with single-state estimation, multi-776 
state joint estimation methods are more advantageous in optimizing the efficiency and accuracy of the 777 
overall algorithm. 778 

 Using an electrochemical model can get detailed internal battery information. This facilitates the 779 
direct computation of some states based on their physical definitions. For instance, ID38 derived the 780 
formula for SOP directly from its physical definition, which is specifically used for SOP calculations. 781 
This direct approach is not feasible with equivalent circuit models. 782 

Furthermore, while equivalent circuit models often require different estimation algorithms for 783 
different state estimates, an electrochemical model enables the design of a unified battery state 784 
estimation algorithm. This singular method can estimate internal battery parameters, which are then 785 
used to compute various related battery states. This efficiency simplifies the overall process, 786 
enhancing the functionality and accuracy of the BMS. 787 
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Looking forward, it is essential to conduct research on joint estimation of multiple states based on 788 
electrochemical models and investigate the interaction mechanisms between different states. This will 789 
fully utilize the advantages of electrochemical models.  790 

 791 
4.1.5 More use of internal battery information 792 

The electrochemical model provides more in-depth information about the internal workings of a 793 
battery compared to the ECMs. This additional insight enables researchers to better monitor the 794 
battery, optimize its performance, and ensure its safety. Not only does the electrochemical model 795 
enhance the accuracy of battery state estimation, but it also plays a crucial role in safeguarding the 796 
battery as well. Relying solely on the equivalent circuit model makes it challenging to meet battery 797 
safety requirements, resulting in conservative designs for current BMS that do not fully exploit the 798 
battery's potential. 799 

As demonstrated in the results from Section 3.3, the majority of researchers still concentrate 800 
primarily on battery SOC estimation. This approach fails to fully capitalize on the benefits offered by 801 
electrochemical models. In ID85, the internal information calculated from the electrochemical model 802 
is used to design the SOA. ID38 calculates SOP directly with internal battery information. They are 803 
all good example of utilizing the battery internal information. For instance, ID46 estimates the battery 804 
core temperature using an electrochemical model, effectively preventing thermal runaway. This 805 
method is superior to those that rely on measuring the battery's surface temperature or calculating the 806 
average temperature. Future research should explore battery safety design based on electrochemical 807 
models. 808 

 809 
4.2 Limitations 810 

Due to the scope of this literature review being primarily focused on battery state estimation 811 
based on electrochemical models, it may not comprehensively cover studies related to battery 812 
modeling, model simplification, and parameter identification. Consequently, readers interested in 813 
these areas may find it necessary to consult additional literature reviews or research papers within 814 
those specific fields. 815 
 816 
5 Conclusion 817 

The widespread use of lithium-ion batteries has led to an increasing demand for enhancing battery 818 
efficiency and ensuring safety. Designing battery state estimation methods based on electrochemical 819 
models can optimize battery performance and safety. In this study, a systematic review of existing 820 
electrochemical model-based battery state estimation research was conducted. A total of 102 research 821 
articles were selected, and their research trends, electrochemical model selection, and battery state 822 
estimation methods were systematically summarized. The results indicate that research in this area has 823 
been growing in recent years. The results demonstrate the good results and the great potential of 824 
electrochemical model-based battery state estimation achieved so far. At the same time, the gaps in 825 
the current research are also raised. The majority of research has focused on individual cells, with less 826 
attention paid to battery modules and packs. There is a lack of standardization in model simplification 827 
methods and model parameter identification processes. Most studies have been conducted only for 828 
single state estimation, with SOC being the most commonly studied, followed by SOH and SOT, and 829 
very few studies have been conducted for SOP and SOB. Future research in this field should focus on 830 
state estimation for modules and packs, parameter identification and model simplification for state 831 
estimation, joint multi-state estimation, and utilizing more internal battery information for state 832 
estimation. In conclusion, this paper demonstrates comprehensive progress in electrochemical 833 
modeling-based battery state estimation. Existing problems and future research directions are also 834 
evaluated and discussed, which will provide a comprehensive reference for readers interested in this 835 
field. 836 
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Appendix  857 
 858 
 859 

Table A Details of the reviewed studies 860 
 861 

ID References State Model Materials 

ID1 [20] SOC, SOH SPM NMC 

ID2 [21] SOH SPM LMO 

ID3 [22] SOC SPM  

ID4 [23] SOC SPM LFP 

ID5 [24] SOC SPM LCO 

ID6 [25] SOC P2D LMO 

ID7 [26] SOC P2D LFP 

ID8 [27] SOH SPMe LFP 

ID9 [28] SOC SPM LFP 

ID10 [29] SOC, SOT, SOB SPM  

ID11 [30] SOC, SOH, SOT P2D NMC 

ID12 [31] SOC, SOH SPM  

ID13 [32] SOC SPMe NMC 

ID14 [33] SOC SPMe LCO 

ID15 [34] SOC SPM LMO 

ID16 [35] SOH P2D  

ID17 [36] SOC SPM NMC 

ID18 [37] SOC, SOT SPM LFP 

ID19 [38] SOC, SOH P2D NMC 

ID20 [39] SOC, SOH SPM  

ID21 [40] SOC, SOH SPMe LCO 

ID22 [41] SOC SPMe LMO 

ID23 [42] SOC P2D NMC 

ID24 [43] SOC P2D  

ID25 [44] SOC SPMe NMC 

ID26 [45] SOC, SOH SPMe LMO-NMC 

ID27 [46] SOC P2D  

ID28 [47] SOC, SOT SPM LFP 

ID29 [48] SOC SPM LCO 

ID30 [49] SOC SPMe NMC 

ID31 [50] SOC P2D LFP 

ID32 [51] SOC SPM LFP 
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ID33 [52] SOC SPMe NMC 

ID34 [53] SOC, SOH P2D NMC 

ID35 [54] SOC, SOH SPM LCO 

ID36 [55] SOC SPM LCO 

ID37 [56] SOC SPM LFP 

ID38 [57] SOP SPM LMO 

ID39 [58] SOH P2D LFP,NMC,NCA 

ID40 [59] SOC, SOH SPM LCO 

ID41 [60] SOC SPM  

ID42 [61] SOC SPM LFP 

ID43 [62] SOC, SOT P2D LCO 

ID44 [63] SOC SPMe LMO 

ID45 [64] SOC P2D  

ID46 [65] SOC, SOT P2D LCO 

ID47 [66] SOC, SOH P2D  

ID48 [67] SOB SPM LFP 

ID49 [68] SOC, SOT SPM LFP 

ID50 [69] SOC SPM  

ID51 [70] SOC SPM  

ID52 [71] SOC, SOH SPM LCO 

ID53 [72] SOC, SOT P2D LMO,NMC,NCA 

ID54 [73] SOH SPMe NMC 

ID55 [74] SOC SPM LCO 

ID56 [75] SOC SPMe LMO 

ID57 [76] SOH SPM NMC 

ID58 [77] SOC SPMe NMC 

ID59 [78] SOC, SOT SPMe LFP 

ID60 [79] SOC P2D LCO 

ID61 [80] SOH P2D LCO 

ID62 [81] SOH SPMe LMO-NMC 

ID63 [82] SOC P2D LCO 

ID64 [83] SOC P2D NCA 

ID65 [84] SOC SPM LFP 

ID66 [85] SOC SPM LMO 

ID67 [86] SOC SPM LCO 

ID68 [87] SOC SPM  

ID69 [88] SOC P2D LCO 

ID70 [89] SOC SPM LCO 

ID71 [90] SOC P2D LCO 

ID72 [91] SOC SPM LCO 

ID73 [92] SOC SPM LCO 

ID74 [93] SOC SPMe LFP 

ID75 [94] SOC P2D LFP 

ID76 [95] SOH SPM LMO-NMC 

ID77 [96] SOP SPM NMC 

ID78 [97] SOC, SOT SPM LCO 

ID79 [98] SOC SPMe LFP 

ID80 [99] SOC SPMe NMC 

ID81 [100] SOC SPMe LFP 

ID82 [101] SOH SPM NMC 

ID83 [102] SOC P2D NCA 

ID84 [103] SOC SPMe NMC 

ID85 [104] SOP SPMe NMC 
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